Sélectionner une page

Et voici la suite de l’article également publié sur le blog de Gilles Domenech “Jardinons Sol Vivant !” dans le cadre d’une série de deux articles sur les plantes légumineuses. Voici le lien vers la deuxième partie sur le blog de Gilles, Les légumineuses (partie 2/2). Je vous invite vivement à visiter le blog de Gilles qui regorge d’informations très utiles !

Des structures spécialisées pour fixer l’azote

Comment démarre cette symbiose ?

De la plante à la racine, lieu des échanges pour la formation des nodules
Les bactéries compatibles vont donc être attirées vers les racines grâce aux hormones de la plante. A leur tour, les bactéries vont secréter des composés qui leurs seront spécifiques selon la souche. Ces composés sont appelés « facteurs nod » car ils sont issus de l’activation et de l’expression du gène nod des bactéries (nod pour « nodulation »). Tout d’abord les racines de la plante hôte secrètent un exsudat qui va jouer le rôle d’attractif pour les bactéries. Cet exsudat contient des hormones végétales (flavonoïdes). Selon sa composition, cet exsudat va attirer certaines bactéries. C’est là que commence la sélection et donc la mise en place d’une relation spécifique. Pour rappel, la plupart des bactéries Rhizobiaceae interagissent avec seulement quelques espèces de légumineuses.
Stades de développement des nodules dans les tissus racinaires
(cf. Ferguson et al 2010 pour le développement complet des nodules)
Les bactéries vont ainsi aller s’accrocher sur les racines, plus particulièrement sur les « poils absorbant » c’est à dire des tous petits prolongements ou filaments formés d’une seule cellule à la surface de la racine.

En réponse au facteur « nod » produit par les bactéries, ces poils absorbants vont se déformer dans les 6 à 8h après l’accroche en produisant des sortes d’excroissances, comme une sorte de bras pour venir s’enrouler autour des bactéries. Les bactéries vont ensuite entrer dans le poil absorbant de la plante pour former un « cordon d’infection ». Elles vont aller jusqu’à la base de ce poil absorbant pour aller infecter les autres cellules de la racine jusqu’à rejoindre leur cible.

Hé oui, ces bactéries se dirigent vers un endroit bien spécifique dans les tissus de la racine. Pendant qu’elles s’accrochaient et qu’elles entraient dans le poil absorbant, leurs facteurs « nod » ont aussi provoqué une modification des tissus à l’intérieur de la racine. Des cellules ont commencé à se diviser pour préparer la formation du fameux nodule.

Les bactéries sont donc relâchées par le cordon d’infection dans les cellules hôtes et vont être enveloppées par une membrane (membrane péribacteroïde). Elles vont continuer à se multiplier pour coloniser les cellules de la zone cible puis vont former les structures appelées bactéroïdes capables de fixer l’azote. A ce moment-là, les nodules sont formés et dits « matures » car opérationnels pour fixer l’azote.

Les nodules matures sont également vascularisés, c’est à dire qu’ils possèdent les « canaux » nécessaires pour être reliés au reste du réseau de la plante. Grâce à eux l’échange de l’azote fixé par la bactérie en contrepartie des nutriments fournit par la plante est facilité.

Pourquoi tant de complications ?

Quelles complications la mise en place de ces nodules etc.. me direz-vous … Qu’est ce qu’ils ont de si particuliers ?

Hé bien les nodules fournissent aux bactéroïdes une barrière limitant l’entrée d’oxygène. Le complexe enzymatique s’occupant de la fixation d’azote (appelé le « complexe nitrogénase ») est en effet très sensible à l’oxygène. Si l’oxygène est trop élevé, il est inactivé et la fixation d’azote s’arrête. Il faut donc le protéger mais il faut aussi que les bactéroïdes puissent respirer. Tout est dans l’équilibre pour que le niveau d’oxygène soit suffisamment bas pour que la fixation d’azote se fasse mais pas trop bas non plus pour que la respiration se fasse.

Afin de réguler ce niveau d’oxygène, les nodules contiennent une hémoglobine végétale en grande concentration appelée « leghémoglobine ». Sa fonction est comparable à l’hémoglobine animale car elle aide le transport d’oxygène aux cellules des bactéries symbiotiques qui doivent respirer de la même façon que l’hémoglobine transporte l’oxygène aux tissus du corps.

C’est aussi elle qui donne la couleur rose au nodule à l’intérieur. D’ailleurs si un nodule est inactif, il perd sa couleur.

Le but de tout ça étant que chacun y trouve son compte : la bactérie fournit de l’azote sous forme assimilable par la plante en échange de nutriments carbonés produits par la plante et d’un hébergement.

Pourquoi les nodules ont-ils des formes différentes ?

Il existe deux types morphologiques principaux de nodules chez les légumineuses : les nodules déterminés prédominant chez les espèces végétales des régions tempérées et les nodules indéterminés principalement retrouvé chez les plantes des régions tropicales et subtropicales. C’est la plante qui conditionne le type de nodule.

Les deux différences majeures sont l’endroit où ont lieu les premières divisions cellulaires et la forme des nodules matures.

Vous vous souvenez des tissus «  cibles » à l’intérieur de la racine vers lesquels les bactéries se dirigent (cf. rubrique « Des structures spécialisées pour fixer l’azote ») ? C’est ce même endroit où une division cellulaire se met en place pour former les tissus du futur nodule. L’endroit où a lieu cette division sera différent selon le type de nodule. Chez les nodules indéterminés, cette division des cellules se produit dans le cortex interne alors que chez les nodules déterminés, elle se situe dans le cortex externe. Chez les plantes, le cortex est un ensemble de cellules qui se situe sous l’épiderme, il n’est pas vascularisé. Dans notre cas, c’est le tissu qui se trouve à quelques cellules de profondeur de la surface de la racine.

Concernant la forme des nodules, on retrouve des formes plutôt cylindriques pour les nodules indéterminés (par ex. les luzernes, les trèfles, les petits pois) et des formes généralement sphériques pour les nodules déterminés (par ex. le soja, les haricots, les lotiers).

Fleurs de lotier corniculé

Les nodules indéterminés ont une durée de vie plus longue que les déterminés avec quelques semaines seulement. En effet, lorsqu’ils sont à maturité, les nodules indéterminés maintiennent une activité cellulaire continue qui permet de produire de nouvelles cellules à infecter et allonge ainsi la structure du nodule. D’où le terme « indéterminé » car sa croissance n’est pas fixée contrairement aux nodules déterminés qui eux, arrivés à maturité ne vont pas maintenir d’activité cellulaire et donc gardera sa forme mature qui est sphérique. Lorsqu’ils sont vieux, les nodules déterminés meurent (on appelle cela la sénescence en biologie, c’est à dire le vieillissement et la dégradation d’un élément). De nouveaux nodules se forment alors sur des parties de racines développées récemment.

Dans les deux types de nodules, lorsqu’ils meurent, une bonne partie des bactéries dans les nodules repartent dans le sol.

 

Rhizobiaceae et Mycorhize, tu me prêtes tes clés ?

Comment les bactéries ont développé l’habilité d’établir une symbiose avec les légumineuses ? Certaines études ont montré que les divergences parmi les bactéries Rhizobiaceae ont eu lieu pour les plus récentes il y a environ 200 à 300 millions d’années et pour le plus anciennes il y a environ 500 millions d’années. C’est bien avant l’apparition des légumineuses qui se sont séparées des Brassicaceae en divergeant il y a environ 125-136 millions d’années. La capacité de nodulation est donc apparu bien après la divergence des bactéries.

Revenons un peu en arrière, à propos du facteur « nod », ces fameuses molécules signal secrétées par les bactéries pour communiquer avec la plante et initier l’infection. De récentes recherches ont montré que les mycorhizes secrètent elles aussi des molécules essentielles pour amorcer la symbiose avec une plante qui sont très similaires à ce facteur nod. On les appelle d’ailleurs « nod factor-like signal molecule » ou facteur Myc (pour « Mycorhizes ») . Cela a des implications au niveau évolutif car cela signifie qu’ils seraient apparentés. Le scénario le plus probable est qu’un ancêtre des bactéries Rhizobiaceae ayant une forme libre dans le sol et pouvant fixer l’azote a acquis ce facteur par un transfert de gène issu d’un champignon. Incroyable non ?! Grâce à ce gène, les rhyzobiaceae pouvaient activer le signal normalement envoyé par les mycorhizes chez certaines plantes. Les bactéries auraient ainsi gagné l’accès pour rentrer dans les cellules de certaines espèces de légumineuses ancestrales, ce qui aurait induit la nodulation des organes atteints et donne le résultat de la symbiose de bactéries fixant l’azote que l’on peut observer aujourd’hui.

Sources (pour les parties 1 & 2)

http://www.mobot.org/MOBOT/research/APweb/ (classification des Angiospermes)

http://www.theplantlist.org/1.1/browse/A/Leguminosae/ (site qui référence les noms latins officiellement acceptés et les synonymes des espèces végétales).

https://www.rhizobia.co.nz/taxonomy/rhizobia (classification des Rhizobiaceae)

Denison & Kiers, 2011 (https://www.semanticscholar.org/paper/Life-Histories-of-Symbiotic-Rhizobia-and-Mycorrhiz-Denison-Kiers/d7b51eb751d540711c383dfb1bdebd0ea5595451)

Hirsch et al, 2001 (http://www.plantphysiol.org/content/127/4/1484)

Hirsch, Ann M. (2009). “A Brief History of the Discovery of Nitrogen-fixing Organisms” (PDF). University of California, Los Angeles.

https://www.mcdb.ucla.edu/Research/Hirsch/imagesb/HistoryDiscoveryN2fixingOrganisms.pdf

Kiers et al 2003 (https://www.zoo.ox.ac.uk/group/west/pdf/Kiers_etal_03.pdf)

Laranjo et al 2014 (http://www.sciencedirect.com/science/article/pii/S0944501313001651#aep-article-footnote-id10)

Streng et al, 2011 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3256379/)

Taiz & Zeiger 2010 (http://6e.plantphys.net/index.html)

Ferguson et al ; 2010 (http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7909.2010.00899.x/full)

1 Commentaire

Soumettre un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *